
Senior Design Project II
DeePaint: Smart Photo Editing on Your Pocket

Low Level Design Report
Project Group Members:

Yavuz Bakman - 21703309

Hande Sena Yılmaz - 21703465

Alperen Öziş - 21703804

Zübeyir Bodur - 21702382

Duygu Nur Yaldız - 21702333

Supervisor: Uğur Doğrusöz

Jury Members: Tağmaç Topal and Erhan Dolak

Low Level Design Report

Feb 28, 2022

This report is submitted to the Department of Computer Engineering of Bilkent University in partial
fulfillment of the requirements of the Senior Design Project course CS492.

Table of Contents

Introduction 4

Object Design Trade-offs 4

Interface Documentation Guidelines 4

Engineering Standards 4

Definitions, acronyms, and abbreviations 5

Packages 5
client.view 5
client.controller 6
client.data 7
server.applicationLogic 8
server.data 8

Class Interfaces 9
Client Layer 9

client.view 9
HomePageViewer 9
MainPageViewer 10
CameraPageViewer 10
GalleryPageViewer 11
FigurePageViewer 11
LearnMorePageViewer 11
WorkspacePageViewer 12

client.data 13
User 13
Figure 13
Image 14

client.controller 14
WorkspaceController 14
TransferController 16
CroppingController 17
FigureLoadingController 17
FigureEditingController 18
ImageLoadingController 18

CameraController 19
HomeController 19
DBManager 20

Server Layer 21
server.applicationLogic 21

ExampleClass 21
server.data 21

ExampleClass 21

Glossary 21

References 21

[This part is intentionally left blank]

Low Level Design Report
DeePaint: Smart Photo Editing on Your Pocket

1. Introduction

During the last decade, social media applications have become widely used
and part of our daily lives due to the easy accessibility of mobile devices and
the increasing quality of their cameras. All around the world, people take
photos constantly and share them on social media. For instance, 1074
photos are uploaded on Instagram every second [1]. While sharing photos,
people have an urge to get rid of the imperfections in the photo such as a
stranger in the background of a selfie or a car in a beautiful scene.

However, applying these changes requires knowledge and experience in
photoshop. A regular person can not achieve to remove an object from a
photo in a realistic way. Nevertheless, this became a need for regular people
on a daily basis. Therefore, applications that make these adjustments
automatically have gained more and more demand. Those applications with
a user-friendly interface, fast modification speed, and low error rate in
modification (i.e. more realistic results) are preferred by the users.

Considering the demand for easy and accurate photoshop applications, we
came up with the DeePaint mobile application. In this report, we provide an
overview of the architecture and design of the application, as well as the
purpose of the system, design goals, consideration of various factors in
engineering design, and teamwork details.

1.1. Object Design Trade-offs

1.1.1. Usability vs Functionality

The main purpose of DeePaint is to ease the photoshop process and thus
usability is maybe the most important design goal we have. However this

doesn’t stop us from offering complex features. We are still able to manage
such complex things like filling the background of the removed object but we
are doing it in a way that minimum user effort is involved thanks to the
automatization coming with deep learning techniques.

1.1.2. Compatibility vs Extensibility

Computer vision is an area where almost every day there is a new
advancement. So there are many aspects of our project where we can
improve our current features or add new ones. Therefore extensibility is
something we have to achieve if we want to keep our app up-to-date and
compete in the market. Compatibility is also an important factor to reach a
higher number of users. Though we will be releasing only on Android for
now, we can easily go live on other operating systems thanks to java being
an environment friendly programming language. We just need to change OS
dependent features while keeping the underlying structure the same to
export our project, say iOS. Using java for the app and AWS servers for the
backend will help us to easily extend new features while keeping main
functionalities compatible with different operating systems.

1.1.3. Space vs Time

We will be using big models which would be a burden to store locally. It also
wouldn't be fast to execute since they require high computation power which
most of the mobile devices lack. Keeping our models in cloud servers which
offer us strong GPUs will enable us to both avoid the redundant data storage
and achieve faster computations. Though there will be a time overhead
sending and receiving requests to/from servers, it is an overhead we can
tolerate because the benefits will outdo the disadvantages.

1.2. Interface Documentation Guidelines

The following interface will be used in the rest of the report:

Class Name

Class name is given as subtitle and explained underneath the title.

Attributes:

● Atributes are listed below Attributes section. Attribute types such as
int, float is given before the attribute name.

Methods:

● Methoda are listed below Methods section. Method return types given
at the beginning, while required parameters are biven inside the
paranthesis.

1.3. Engineering Standards

In this report, UML guidelines are followed to visualize our system design
[2]. Also, we used IEEE referencing style for citations [3].

1.4. Definitions, acronyms, and abbreviations

API

Application Programming Interface. The connection between computers or
between computer programs. It is a type of software interface, offering a
service to other pieces of software.

AWS

Amazon Web Services. Reliable, scalable, and inexpensive cloud computing
services provided by Amazon. Remote servers can be rented through this
service.

CPU

Central Processing Unit. The main processor or just processor is the
electronic circuitry that executes instructions comprising a computer
program.

GUI

Graphical User Interface. An interface through which a user interacts with
electronic devices such as computers, hand-held devices, and other
appliances.

2. Packages

According to the system’s high-level design, there are two main layers, client
and server, consisting of packages that include their class interfaces. Since
there were no changes made in the high-level design of the system, the
report will continue with class diagrams of each package. External packages
(third parties) are ignored for simplicity.

2.1. client.view

Figure 1: Class diagram for the client.view package

2.2. client.controller

Figure 2: Class diagram for the client.controller package

2.3. client.data

Figure 3: Class diagram for the client.data package

2.4. server.applicationLogic

Figure 4: Class diagram for server.applicationLogic package

2.5. server.data

Figure 5: Class diagram for server.data package

3. Class Interfaces

Below is the list of the interfaces of the system, for each layer and tier.

3.1. Client Layer

Below is the list of the interfaces of the system, for each tier.

3.1.1. client.view

3.1.1.1. HomePageViewer

HomePageViewer is responsible for displaying the
welcome page when the application is started and
allowing users to sign in/signup for the app.

Methods:

● protected void pressSignInButton(): Directs app to
sign in page.

● protected void pressSignUpButton(): Directs app to
sign up page.

3.1.1.2. MainPageViewer

MainPageViewer is responsible for showing the initial
actions a user can take, i.e. opening the camera,
displaying saved figures, or exporting an image from
the gallery.

Methods:

● protected void pressOpenCameraButton(): Directs
app to Camera Page and opens the camera for
taking photos.

● protected void pressOpenGalleryButton(): Directs
app to Gallery Page and lists the pictures already
exists in the users’ gallery.

● protected void pressOpenFiguresButton(): Directs
app to previously saved figures page for users to
check them.

3.1.1.3. CameraPageViewer

CameraPageViewer is responsible for displaying the
camera and allowing the user to take photos, which
they will be editing in the workspace view.

Methods:

● protected void pressTakePhotoButton(): Takes the
photo and directs it to the state where users decide
to accept or discard the image and take a new one.

● protected void pressDiscardImageButton():
Discards the taken image and directs to the
photo-taking page.

● protected void pressAcceptImageButton(): Accepts
the taken image and directs to the main editing
page.

3.1.1.4. GalleryPageViewer

GalleryPageViewer is responsible for showing the
initial actions a user can take, i.e. opening the
camera, displaying saved figures, or exporting an
image from the gallery.

Methods:

● protected void pressSelectImageButton(): Selects
the already existing image from the gallery of the
user and directs it to the state where users decide
to accept or discard the image and choose a new
one.

● protected void pressDiscardImageButton():
Discards the selected image and directs to the
gallery page to choose a new one.

● protected void pressAcceptImageButton(): Accepts
the selected image and directs to the main editing
page.

3.1.1.5. FigurePageViewer

FigurePageViewer is responsible for opening the
saved figure page whenever the user presses the
Saved Figures button on the Main Page. It will show
the list of saved figures so far by the user.

Methods:

● protected void pressRemoveFigureButton():
Removes the selected figure from the figure page.

● protected void pressSelectFigureButton(): Allows
users to select from multiple figures to remove
them.

3.1.1.6. LearnMorePageViewer

LearnMorePageViewer includes the information about
the app and displays the buttons, “Contact Us”,
“FAQ” and “Team”. The “Contact Us” button will
redirect the user to the DeePaint website. The FAQ

button will redirect the FAQ page of the DeePaint
application. Finally, the Team button will display a
modal that shows the names of developers who
contributed to this project.

Methods:

● protected void displayInfo(): Displays all the
information included in LearnMorePage by directing
to “Contact Us”, “FAQ” or “Team” based on the
preference of the user.

3.1.1.7. WorkspacePageViewer

WorkspacePageViewer is the main page where the
users will interact with the photo and edit them. It
includes GUI items for displaying the saved figures,
segmenting the image, manually editing the image,
saving the edited images, and more for the
manipulation of the image.

Methods:

● protected void pressAutoSegmentButton(): Starts
auto segmentation on the image and displays the
segmented figures afterward.

● protected void doManuelCrop(): Allows users to
manually crop the figures by hand instead of auto
segmentation, then display the segmented figure.

● protected void pressFillButton(): Fills the removed
areas smoothly after figures are removed by using
the deep fill technique.

● protected void pressBlendButton(): Operates the
image blending of the figures within the specific
area of the main editing image that the user
desires.

● protected void pressOpenFiguresButton(): Opens a
panel where the already saved figures are resided
and allows users to choose from the figures that

they want to use for manipulation on the image
editing.

● protected void pressSaveImageButton(): Saves the
edited image on the main editing page to users’
gallery.

● protected void pressUndoButton(): Undos the
changes that have been made on the edited image
one by one in each press.

● protected void pressOKButton(): Approves the
changes made so far for the image editing and
manipulation.

3.1.2. client.data

3.1.2.1. User

This class represents the User table of the
application’s database as entities.

Attributes:

● private int userID: Stores the id of the user.
● private String username: Stores the name of the

user.
● private int password: Stores the password of the

user.

3.1.2.2. Figure

This class represents the segmented figures as a
figure object for the local storage.

Attributes:

● private int width: Stores the width of the figure.
● private int height: Stores the height of the figure.
● private Array mask: Stores the filtered/labeled

image representation of the figures.

Methods:

● public Figure getFigure(): Returns the specified
figure from the storage.

3.1.2.3. Image

This class represents the edited images as an image
object for local storage.

Attributes:

● private int width: Stores the width of the image.
● private int height: Stores the height of the image.
● private io.Image matrix: Stores the matrix

representation of the image pixel by pixel.

Methods:

● public io.Image getMatrix(): Returns the matrix
representation of the edited image.

● public void setMatrix(io.Image matrix): Sets the
matrix representation of the edited image.

3.1.3. client.controller

TransferController, DBManager, and WorkspaceController
are singleton classes, and WorkspaceController is the
façade class.

3.1.3.1. WorkspaceController

This class manages all of the operations related to
the workspace the user is interacting with, such as
image editing, selecting a figure, saving the image
into the gallery, etc.

This class is also singleton, as façade classes usually
have only one instance at any given time. This is also
true for the DeePaint.controller.WorkspaceController
as well, there will be only one workspace.

Attributes:

● private CroppingController cropController: The
cropping controller the workspace will use. It will
provide operations for retrieving manually selected
edges and retrieving the figure.

● private FigureLoadingController figureLoadingCont:
The figure loading controller the workspace will
use. It will manage to load a selected figure and
save a specific figure.

● private FigureEditingController figureEditingCont:
The figure editing controller the workspace will use.
Will provide the workspace operations for rotating
and scaling a figure.

● private Image image: The image the workspace is
currently working on.

● private ArrayList<Figure> figures: The list of
figures in the device so far. Will be stored in the
WorkspaceController as an attribute as well to
easily access those figures. If there is a change in
those lists of figures, the device storage will be
updated as well.

● private ImageLoadingController imageLoadingCont:
The image loading controller will manage
operations related to the gallery, such as saving or
loading an image locally.

● private static TransferController = null: The
transfer controller will send the necessary requests
to AWS for segmentation, blending, and filling
(inpainting). It is a singleton class since connection
classes are usually singletons.

Methods:

● public void rotateFigure(Figure f, double angle):
Encapsulated version of the
FigureEditingController.rotate() method.

● public void scaleFigure(Figure f, double scale):
Encapsulated version of the
FigureEditingController.scale() method.

● public void manuallySelectedEdges(): Encapsulated
version of the
CroppingController.manuallySelectedEdges()

method.

● public void autoSegment(Image image): Sends the
AWS request for segmenting the image in the
workspace, using the workspace’s
TransferController. After receiving the
response, processes the ArrayList<Image>

binaryEdges, so that at the end, those edges are
placed at the top of the image in the View (not in
the actual image in the controller, as we want to
select those segmented lines and do operations
with them, such as filling, saving the figure, etc.).

● public Figure extractFigure(byte[] edges):
Encapsulated version of
CroppingController.extractFigure().

● public void saveFigure(Figure f): Basically
encapsulates
FigureLoadingController.saveFigure().

● public void loadFigure(String figureUri): Basically
encapsulates
FigureLoadingController.loadFigure(), and
also communicates with the view.

● public void saveImage(Image image): This method
also encapsulates ImageLoadingController
.saveImage().

● public void blendImage(Image sourceImage, byte[]
mask, ArrayList<Figure> figures) : Sends the
request to the AWS, so that the source image is
blended into the image in the workspace. Basically,
this method encapsulates the request transfer
controller sends. The mask will be either drawn by
the user, or a mask that is a result of a
segmentation operation.

● public void fillImage(Image image, byte[] mask):
Sends the request to the AWS, so that the image in
the workspace is inpainted by the given mask,
which will be either provided by the user or
retrieved from a segmentation.

3.1.3.2. TransferController

This class will manage the connection between the
AWS and the application. It will be also responsible

for sending the HTTP requests to the server and
receiving the HTTP response.

Attributes:

● private String port: The port number of the
connection.

● private String IP: The IP address of the connection.

Methods:

● public void connect(): Establishes the connection
between the AWS and application, using the port
number and IP address of this singleton instance.

● public void disconnect(): Removes the connection
between the AWS and the application.

● public Image blendRequest(Image dest, Image src,
Image mask): Sends an image blending request to
AWS to execute.

● public Image fillRequest(Image dest, byte[] mask):
Sends an image filling request to AWS to execute.

● public Image segmentRequest(Image dest, byte[]
mask): Sends a segmentation request to AWS to
execute. Returns an image that represents the
segmented regions.

3.1.3.3. CroppingController

This class is responsible for manual cropping
operations.

Methods:

● public void manuallySelectEdges() : Opens the
palette in the View so that the user can manually
select their own edges.

● public void autoSegment(Image image) :
Automatically segments the image ?

● public Figure extractFigure(Image src, byte[]
edges): Given an array of edges, extracts a Figure
from the source Image.

3.1.3.4. FigureLoadingController

This class is responsible for file operations regarding
the data.Figure class, which is an extension of the
implementation of Images in Java, ImageIO.

Methods:

● public Figure loadFigure(String figureUri): Returns
a selected figure from the gallery, where the
selected figure is specified by figureUri.

● public void saveFigure(Figure f): Save a given
figure f, to the constant path DeePaint app will use:
“~/DeePaint/Workspace/Figures/figure_file_
name.figure_extension”.

3.1.3.5. FigureEditingController

This class is responsible for manipulating figures,
namely rotation and scaling.

Methods:

● public void rotate(Figure f, double angle): Given a
figure f and an angle alpha, rotates f alpha
degrees, in a counterclockwise direction.

● public void scale(Figure f, double scale): Given a
figure f and a scaling coefficient s, ranging from 0
to Integer.MAX_VALUE, scales the figure so that
size is multiplied by that scale. If the resulting
figure is too small or too large, an exception will be
thrown.

3.1.3.6. ImageLoadingController

This class is responsible for file operations on
client.data.Image class, which is a

not-so-straightforward implementation of WhatsApp
Stickers in Java.

Methods:

● public Image loadImage(String imageUri): Returns
a selected figure from the gallery, where the
selected figure is specified by figureUri.

● public void saveImage(Image img): Save a given
figure f, to the constant path DeePaint app will use:
“~/DeePaint/Workspace/Images/image_file_na
me.image_extension”.

3.1.3.7. CameraController

This class is responsible for connecting to the camera
of the device of the user and letting the user take a
picture.

Methods:

● public void openCamera(): Initiates the camera of
the device of the user based on the permission to
let the user take a picture.

● public void getPermission(): Gets the users’
permission for asking the device to initiate the
camera for taking pictures.

● public void checkPermission(): Checks whether the
permission that the user gives is stable before
connecting to the camera of the device.

● public void takePhoto(): If the camera is reached
by the application, this allows users to take
pictures of their preference to further use it for
editing.

3.1.3.8. HomeController

This class will manage the user log-in and sign-up
operations and will use the DBManager to access the
database of users. The DBManager is a singleton that
HomeController will use.

Attributes:

● private static DBManager databaseManager = null:
This is the singleton instance is responsible for
establishing a connection between the database
and the mobile device, using the JDBC driver.

Methods:

● public void initApp(): Communicates with the view
classes so that the application is initialized.

● public void connectDB(): Establishes the connection
between database and application using a
hardcoded connection string, which consists of a
URL, DB user, and DB password.

● public void connectServer(): Establishes the
connection between the AWS and application (?)

● public void signIn(String username, String pw):
Tells the DBManager to execute such a query so
that the user with the given information exists, and
credentials are correct. After that, the user will
have their own session as the application is open.

● public void signUp(String username, String pw):
Tells the DBManager to execute such a query so
that the user with the given information does not
exist, and a row in the User table is created. After
that, the user will be asked to sign in, so this
method will also redirect the view in such a way.

3.1.3.9. DBManager

This singleton class is responsible for establishing a
connection and then storing it, using the JDBC driver
for MySQL. It can also execute any SELECT query,
and then retrieve the results.

Attributes:

● private Connection connection: The connection
established will be stored in this attribute.

Methods:

● public ResultSet query(Connection c, String query):
Executes any MySQL query using the connection
provided. If there is a result, it is returned. If there
is any MySQL exception, they are also handled.

● public ArrayList<T> processResultSet(ResultSet
rs): A ArrayList<T> processResultSet() method will
be implemented if necessary for SELECT queries,
that is if the database gets larger.

3.2. Server Layer

Below is the list of the interfaces of the system, for each tier.

3.2.1. server.applicationLogic

3.2.1.1. BlendingNeuralNetworkEngine

This class is responsible for the Blending task.
Attributes:

● private model BlendingNeuralNetwork: This attribute
stores the blending neural network parameters.

Methods:

● public Image blend(Image i, Figure f,
Arraylist<int> mask): This method makes the neural
network work and applies the blending task with the given
parameters.

3.2.1.2. SegmentationNeuralNetworkEngine

This class is responsible for the Segmentation task.

Attributes:

● private model SegmentationNeuralNetwork: This
attribute stores the segmentation neural network
parameters.

Methods:

● public ArrayList<int> segment(Image i): This
method makes the segmentation.

3.2.1.3. DeepFillNeuralNetworkEngine

This class is responsible for the Deep Fill task.
Attributes:

● private model DeepFillNeuralNetwork: This attribute
stores the deep fill neural network parameters.

Methods:

● public Image fill(Image i, ArrayList<int> mask):
This method makes the neural network works and fill the
selected area

3.2.1.4. TransferEngine

This class gets the request from the client and make
the appropriate models work to handle the request
and send the response to the client

Attributes:

● private blender BlendingNeuralNetworkEngine: This
attribute provides the methods for the blending task.

● private filler DeepFillNeuralNetworkEngine: This
attribute provides the methods for the deep filling task.

● private filler SegmentationNeuralNetworkEngine:
This attribute provides the methods for the segmentation
task.

Methods:

● public Image handleBlending(Image i, Figure f,
ArrayList<int> mask): This method handles the
blending task

● public Image handleDeepFill(Image i,
ArrayList<int> mask): This method handles the
deep filling task.

● Public ArrayList<int> mask handleSegmentation
(Image i): This method handles the segmentation
task

● public void sendResponse(Image i, Figure f,
ArrayList<int> mask): This method sends the
output of neural networks into the client

3.2.2. server.data
We will be holding the neural network models in the cloud since they are big files
and it would be redundant to store them locally. Moreover running these models
requires high computing power which most of the mobile devices lack. Therefore
holding these models in the cloud helps us to avoiding redundant data storage
and better computation power.

3.2.2.1. BlendingNeuralNetwork

This is the NN model responsible for the blending
task.

Attributes:

● Private Weights: This represents the learned parameters
by the model to do the task.

● Private Architecture: This represents the underlying
architecture of the blending NN.

● Private Password: This is the password needed to
access the models.

3.2.2.2. SegmentationNeuralNetwork

This is the NN model responsible for the
segmentation task.

Attributes:

● Private Weights: This represents the learned parameters
by the model to do the task.

● Private Architecture: This represents the underlying
architecture of the segmentation NN.

● Private Password: This is the password needed to
access the models.

3.2.2.3. DeepFillNeuralNetwork

This is the NN model responsible for the deepfilling
task.

Attributes:

● Private Weights: This represents the learned parameters
by the model to do the task.

● Private Architecture: This represents the underlying
architecture of the deepfill NN.

● Private Password: This is the password needed to
access the models.

4. References

[1]“Instagram by the Numbers: Stats, Demographics & Fun Facts,” Omnicore
Agency, Jan 3, 2021 [Online]. Available:
https://www.omnicoreagency.com/instagram-statistics/ [Accessed Oct 10, 2021].

[2] “Unified modelling language.” https://www.visual-paradigm.com/guide/
uml-unified-modeling-language/what-is-uml/. [Accessed: 27- Feb- 2022].

[3] “Ieee reference guide.” https://ieeeauthorcenter.ieee.org/wp-content/
uploads/IEEE-Reference-Guide.pdf. [Accessed: 27- Feb- 2022].

https://www.omnicoreagency.com/instagram-statistics/

