
Senior Design Project
DeePaint : Smart Photo Editing on Your Pocket

Final Report
Project Group Members:

Yavuz Bakman - 21703309

Hande Sena Yılmaz - 21703465

Alperen Öziş - 21703804

Zübeyir Bodur - 21702382

Duygu Nur Yaldız - 21702333

Supervisor: Uğur Doğrusöz

Jury Members: Tağmaç Topal and Erhan Dolak

Table of Contents

Introduction 4

Requirements Details 5

Functional Requirements 5

Non-Functional Requirements 7

Pseudo Requirements 8

Final Architecture and Design Details 9

Overview 9

Subsystem Decomposition 9

Hardware/Software Mapping 11

Persistent Data Management 12

Access Control and Security 12

Global Software Control 12

Boundary Conditions 13

Development/Implementation Details 14

Object Design Trade-offs 14

Packages and Class Interfaces 15

Testing Details 28

Functional and non-Functional Testing 28

Continuous Integration 28

Testing the UI 28

Server Performance and Response 28

Maintenance Plan and Details 29

Server Maintenance and Optimization 29

Database Maintenance 29

Other Project Elements 30

Consideration of Various Factors in Engineering Design 30

Ethics and Professional Responsibilities 32

Judgements and Impacts to Various Contexts 32

Teamwork Details 33

New Knowledge Acquired and Applied 36

Conclusion and Future Work 37

Glossary 38

References 38

Final Report
DeePaint: Smart Photo Editing on Your Pocket

1. Introduction
During the last decade, social media applications have become widely used and part of

our daily lives due to the easy accessibility of mobile devices and the increasing quality

of their cameras. All around the world, people take photos constantly and share them on

social media. For instance, 1074 photos are uploaded on Instagram every second [1].

While sharing photos, people have an urge to get rid of the imperfections in the photo

such as a stranger in the background of a selfie or a car in a beautiful scene.

However, applying these changes requires knowledge and experience in photoshop. A

regular person can not achieve to remove an object from a photo in a realistic way.

Nevertheless, this became a need for regular people on a daily basis. Therefore,

applications that make these adjustments automatically have gained more and more

demand. Those applications with a user-friendly interface, fast modification speed, and

low error rate in modification (i.e. more realistic results) are preferred by the users.

DeePaint places itself just to this point. It is an easy-to-use, fast and fancy application

that provides its users a variety of image manipulation tools. DeePaint gains its power

by using state-of-the-art deep learning techniques. For example, we employed image

segmentation methods in our application, which enables the users to select the

object-to-remove with only one screen touch. Such fast and easy image manipulation

methods make DeePaint one step ahead of its relative applications.

In this report, we first provide an overview of functional and non-functional

requirements. Afterwards, we explain the final architecture and design details of the

project. Then, we inspect development and testing details as well as maintenance

plans. Finally we present other project elements and future work for the project.

2. Requirements Details

2.1. Functional Requirements

In this section, functional requirements of DeePaint are discussed in terms of both

system functionality and user functionality.

System Functionality

● The system should require the user to sign in/up with an email and a password.

● The system should ask the user’s permission to reach the gallery and use

camera functionality.

● The system should display the images in the gallery.

● The system should receive an image to be edited as input from the user and

display it.

● The system should segment the objects in the selected image and display them.

● The system should receive the position and size information of the areas that are

empty in the image (i.e object is removed).

● The system should convert the given image to drawing.

● The system should change the style of an image to selected target style.

● The system should display the edited version of the image as well as the original

one.

● The system should fill the empty areas in the image in a natural way.

● The system should be connected to a server.

● The system should send images to the server in order to process machine

learning algorithms (e.g. segmentation, auto-fill).

● The system should receive processed images from the server.

● The system should receive segmentation information from the server.

● The system should provide an option to save a processed image and should

save an image to the local gallery if the user decides.

● The system should provide an option for the user to reset the changes in the

editing image.

User Functionality

● The user can allow the DeePaint to reach the user gallery and the camera.

● The user can select a photo from the local gallery or can take a new photo and

upload it to the system to edit.

● The user can view the pre-segmented objects in the image.

● The user can draw the boundaries of the place-to-remove in the image.

● The user can remove any object in the image that is selected by either

segmentation or drawing.

● The user can upload two images, one for styling target and one for target image.

Then the user receives the target image in the style of the other image.

● The user can change the style of an image similar to the provided style types.

● The user can reset the changes in the image.

● The user can view the original version of the image as well as the edited version.

● The user can save the edited image to the local gallery.

2.2. Non-Functional Requirements

Performance

While the user is choosing what to do with his photograph, (What to remove from the

scene etc.) our program should be smooth with its reactions, namely in 100ms.

Once the user has inputted his desire to our app, we should return the edited photo

back to the user in at most 20 seconds.

Privacy

Since users will upload their personal photographs to our app, we must ensure every

user can only access photographs uploaded by themselves. We will render this

possible via basic authorization.

Usability

Since one of the rationales of our project is to rescue our users from dealing with the

difficulty of the traditional photoshop apps, our app should be easy to use. A new

user should be able to adapt to it in 2 minutes.

Extendability

Given the highly increasing number of innovations in AI in recent years, our design

patterns should allow us to easily add a new feature to our application or improve

the existing ones in terms of accuracy, usability, etc.

Accuracy

Although there is not a universal metric to measure accuracy of our tasks

numerically, our app should be able to output realistic images, to the extent of

tricking a FakeorNot robot.

Security

Since the actual editing of the photo will be done in the cloud servers and not in the

local workspace of the user, we cannot allow bots to use our application and keep

our servers busy. Therefore we will use basic authentication before allowing users to

utilize our app.

2.3. Pseudo Requirements

● DeePaint mobile application is written in Java programming language, and it is

on the Android platform.

● Since the mobile application is in the Android platform, Android Studio IDE is

used for development.

● For implementing deep learning features of the application, a server-side is

required. Since those libraries, such as PyTorch, TensorFlow, Keras, Theano, are

libraries that all can be used in Python, the server-side is implemented in Python.

● Object-oriented programming is used throughout the project.

● GitHub is used for version control and collaboration, as well as opening issues if

necessary.

● The mobile application is free to use, and there are no in-app purchases. Hence,

all of the users are able to use the features without making any payment.

● The application requires the user to have an internet connection since processing

of the image will be carried out in the cloud.

3. Final Architecture and Design Details

3.1. Overview

In this section, we provide the overall architecture and design details of DeePaint.

DeePaint adopts client-server architecture since it requires running machine learning

applications in strong machines. The details of the proposed software architecture are

explained in the following sections.

3.2. Subsystem Decomposition

The DeePaint application has two main components: client and server. The Client is the

part of the application responsible for displaying images, receiving the editing prompts

from the user and showing the final results, etc. The Server is responsible for applying

the requested changes to target images by running machine learning algorithms and

returning the edited images to the client.

Figure 1: Subsystem Decomposition

3.3. Hardware/Software Mapping

DeePaint is a mobile application that runs on the Android operating system. Both the

hardware and software are compatible with varying Android releases. However, since

the computational power of a smartphone is not strong enough to perform machine

learning tasks, necessary parts of the application, namely the Server Tier, are deployed

on Google Colab.

The communication between these two systems will be made through HTTP requests.

The robustness of Google Colab System will solve the computing problem mentioned

above.

For example, the client-side, which is implemented in Java, will send an HTTP POST

request to Google Colab each time the user uses a smart feature. Then, the information

will be processed in the server, which is implemented in Python. Then, the server-side

will send a response for this HTTP request, which will be basically the edited version of

the image.

Below is the corresponding component diagram for this hardware/software mapping.

Figure 2: Hardware/Software Mapping

3.4. Persistent Data Management

In our system, we deploy client-server architecture and we care about the privacy of the

users’ data. Therefore, we do not store the users’ image data on our server. We just

send the necessary requests to the server which is differentially private and get the

output which is also private.

We store the generated images on the local storage which is the users' phone. We store

authentication information (i.e. emails, passwords) on an online database named

Firebase.

3.5. Access Control and Security

Users can only use DeePaint by creating an account. Passwords of the users are

encrypted so that they cannot be known by any other person. The images processed by

the application are stored on their local device, instead of a database. However, in order

for the users to use the application to its fullest, they need to permit the application to

access the following;

● Storage

● Camera

● Gallery

3.6. Global Software Control

We'll go through how the whole system is managed on a global basis in this part. We go

through how requests are made and how subsystems communicate with one another.

Finally, several concurrency difficulties are addressed.

There are server and client side and totally 3 phases in our system which are request,

processing and response phases.

In the request phase, the user selects the image from its local storage and opens the

edit page. In the edit page, the user decides the operation. After the decision, the user

clicks the process button and sends the operation type, the image and how the

operation is done.

In the processing phase, the server gets the necessary input from the client and utilizes

the neural networks to process the input. There might be multiple requests from

different users. In this case, the server has a priority algorithm to select which operation

is done first.

In the response phase, the output is sent to the client from the server side. This

processing phase and response phase should be fast because of the usability

concerns. We want to bring concurrency to this phase, as well as the request phase, by

finding an appropriate port configuration that minimizes the client-side delay.

3.7. Boundary Conditions

Boundary conditions for DeePaint can be categorized under three conditions which are

initialization, termination and failure.

Initialization

Users of DeePaint need to download our app from the google play store or find an apk

version. They need to sign up and then give our app access to their gallery and/or their

camera if they want to retrieve images from there. Internet connection will be needed to

use DeePaint since it connects to cloud servers for different tasks.

Termination

When the DeePaint gets terminated, any running process on the device and on the

server will also be terminated. If there are any unsaved changes, they will be lost.

Memory that is saved by DeePaint will be released after the termination.

Failure

There are several failure cases a user can experience while using DeePaint. If there is a

failure while taking a photo via camera, the user will be redirected to the main page

where he can either try with the camera again or choose another photo from his gallery.

If there is a failure while sending a request to the server due to no or weak internet

connection, the user will be notified that there is a problem with the internet connection

and will be redirected to the edit page without losing information about the photo he sent

to the server.

If the request is sent to the server but there is a problem in the server and cant process

the image at that moment, the user will be notified about the problem in the server and

asked to try again later.

If there is no response from the server after passing a specified timeout duration, the

user will be notified about the problem and asked to try again later. He can also send a

report to the developers about the problem.

If there is not enough free space in the device’s disk for the saving of an edited image or

a figure, the user will be notified and asked to open up space in the device.

4. Development/Implementation Details

4.1. Object Design Trade-offs

4.1.1. Usability vs Functionality

The main purpose of DeePaint is to ease the photoshop process and thus usability is

maybe the most important design goal we have. However this doesn’t stop us from

offering complex features. We are still able to manage such complex things like filling

the background of the removed object but we are doing it in a way that minimum user

effort is involved thanks to the automatization coming with deep learning techniques.

4.1.2. Compatibility vs Extensibility

Computer vision is an area where almost every day there is a new advancement. So

there are many aspects of our project where we can improve our current features or add

new ones. Therefore extensibility is something we have to achieve if we want to keep

our app up-to-date and compete in the market. Compatibility is also an important factor

to reach a higher number of users. Though we will be releasing only on Android for now,

we can easily go live on other operating systems thanks to java being an environment

friendly programming language. We just need to change OS dependent features while

keeping the underlying structure the same to export our project, say iOS. Using java for

the app and Google Colab servers for the backend will help us to easily extend new

features while keeping main functionalities compatible with different operating systems.

4.1.3. Space vs Time

We will be using big models which would be a burden to store locally. It also wouldn't be

fast to execute since they require high computation power which most of the mobile

devices lack. Keeping our models in cloud servers which offer us strong GPUs will

enable us to both avoid the redundant data storage and achieve faster computations.

Though there will be a time overhead sending and receiving requests to/from servers, it

is an overhead we can tolerate because the benefits will outdo the disadvantages.

4.2. Packages and Class Interfaces

4.2.1 client.view

Figure 3: Class diagram for client.view package

HomePageViewer

HomePageViewer is responsible for displaying the welcome page when the application
is started and allowing users to sign in/signup for the app.

Methods:

● protected void pressSignInButton(): Directs app to sign in page.
● protected void pressSignUpButton(): Directs app to sign up page.

MainPageViewer

MainPageViewer is responsible for showing the initial actions a user can take, i.e.
opening the camera, displaying saved figures, or exporting an image from the gallery.

Methods:

● protected void pressOpenCameraButton(): Directs app to Camera Page and opens the
camera for taking photos.

● protected void pressOpenGalleryButton(): Directs app to Gallery Page and lists the
pictures already exists in the users’ gallery.

CameraPageViewer

CameraPageViewer is responsible for displaying the camera and allowing the user to
take photos, which they will be editing in the workspace view.

Methods:

● protected void pressTakePhotoButton(): Takes the photo and directs it to the state where
users decide to accept or discard the image and take a new one.

● protected void pressDiscardImageButton(): Discards the taken image and directs to the
photo-taking page.

● protected void pressAcceptImageButton(): Accepts the taken image and directs to the
main editing page.

GalleryPageViewer

GalleryPageViewer is responsible for showing the initial actions a user can take, i.e.
opening the camera, displaying saved figures, or exporting an image from the gallery.

Methods:

● protected void pressSelectImageButton(): Selects the already existing image from the
gallery of the user and directs it to the state where users decide to accept or discard the
image and choose a new one.

● protected void pressDiscardImageButton(): Discards the selected image and directs to
the gallery page to choose a new one.

● protected void pressAcceptImageButton(): Accepts the selected image and directs to the
main editing page.

LearnMorePageViewer

LearnMorePageViewer includes the information about the app and displays the buttons,
“Contact Us”, “FAQ” and “Team”. The “Contact Us” button will redirect the user to the
DeePaint website. The FAQ button will redirect the FAQ page of the DeePaint
application. Finally, the Team button will display a modal that shows the names of
developers who contributed to this project.

Methods:

● protected void displayInfo(): Displays all the information included in LearnMorePage by
directing to “Contact Us”, “FAQ” or “Team” based on the preference of the user.

WorkspacePageViewer

WorkspacePageViewer is the main page where the users will interact with the photo
and edit them. It includes GUI items for displaying the saved figures, segmenting the
image, manually editing the image, saving the edited images, and more for the
manipulation of the image.

Methods:

● protected void pressAutoSegmentButton(): Starts auto segmentation on the image and
displays the segmented figures afterward.

● protected void doManuelCrop(): Allows users to manually crop the figures by hand
instead of auto segmentation, then display the segmented figure.

● protected void pressFillButton(): Fills the removed areas smoothly after figures are
removed by using the deep fill technique.

● protected void pressConvertDrawingButton(): Converts the current photo in the style of a
hand drawing.

● protected void pressTransferStyleButton(): Transfers the style of the one image to the
other one.

● protected void pressSaveImageButton(): Saves the edited image on the main editing
page to users’ gallery.

● protected void pressUndoButton(): Undos the changes that have been made on the
edited image one by one in each press.

● protected void pressOKButton(): Approves the changes made so far for the image
editing and manipulation.

4.2.2 client.controller

Figure 4: Class diagram for client.controller package

TransferController, DBManager, and WorkspaceController are singleton
classes, and WorkspaceController is the façade class.

WorkspaceController

This class manages all of the operations related to the workspace the user is
interacting with, such as image editing, selecting a figure, saving the image
into the gallery, etc.

This class is also singleton, as façade classes usually have only one instance
at any given time. This is also true for the
DeePaint.controller.WorkspaceController as well, there will be only one
workspace.

Attributes:

● private CroppingController cropController: The cropping controller the workspace
will use. It will provide operations for retrieving manually selected edges and
retrieving the figure.

● private Image image: The image the workspace is currently working on.
● private ImageLoadingController imageLoadingCont: The image loading controller

will manage operations related to the gallery, such as saving or loading an
image locally.

● private static TransferController = null: The transfer controller will send the
necessary requests to AWS for segmentation, blending, and filling
(inpainting). It is a singleton class since connection classes are usually
singletons.

Methods:

● public void manuallySelectedEdges(): Encapsulated version of the
CroppingController.manuallySelectedEdges() method.

● public void autoSegment(Image image): Sends the AWS request for segmenting
the image in the workspace, using the workspace’s TransferController.
After receiving the response, processes the ArrayList<Image>

binaryEdges, so that at the end, those edges are placed at the top of the
image in the View (not in the actual image in the controller, as we want to
select those segmented lines and do operations with them, such as filling,
saving the figure, etc.).

● public void saveImage(Image image): This method also encapsulates
ImageLoadingController .saveImage().

● public void trasferStyle(Image sourceImage, Image destImage) : Sends the request
to the server, so that the source image's style is transferred to the
destination image.

● public void fillImage(Image image, byte[] mask): Sends the request to the server,
so that the image in the workspace is inpainted by the given mask, which will
be either provided by the user or retrieved from a segmentation.

● public void convertDrawing(Image image): Sends the request to the server, so that
the image in the workspace is converted to hand drawing style.

TransferController

This class will manage the connection between the AWS and the application.
It will be also responsible for sending the HTTP requests to the server and
receiving the HTTP response.

Attributes:

● private String port: The port number of the connection.
● private String IP: The IP address of the connection.

Methods:

● public void connect(): Establishes the connection between the AWS and
application, using the port number and IP address of this singleton instance.

● public void disconnect(): Removes the connection between the AWS and the
application.

● public Image convertDrawingRequest(Image dest): Sends a convert to drawing
request to the server to process the image

● public Image transferStyleRequest(Image dest, Image src): Sends a transfer style
request to the server.

● public Image fillRequest(Image dest, byte[] mask): Sends an image filling request
to the server to execute.

● public Image segmentRequest(Image dest, byte[] mask): Sends a segmentation
request to AWS to execute. Returns an image that represents the segmented
regions.

CroppingController

This class is responsible for manual cropping operations.

Methods:

● public void manuallySelectEdges() : Opens the palette in the View so that the user
can manually select their own edges.

● public void autoSegment(Image image) : Automatically segments the image

ImageLoadingController

This class is responsible for file operations on client.data.Image class, which
is a not-so-straightforward implementation of WhatsApp Stickers in Java.

Methods:

● public Image loadImage(String imageUri): Returns a selected figure from the
gallery, where the selected figure is specified by figureUri.

● public void saveImage(Image img): Save a given figure f, to the constant path
DeePaint app will use:
“~/DeePaint/Workspace/Images/image_file_name.image_extension”.

CameraController

This class is responsible for connecting to the camera of the device of the
user and letting the user take a picture.

Methods:

● public void openCamera(): Initiates the camera of the device of the user based
on the permission to let the user take a picture.

● public void getPermission(): Gets the users’ permission for asking the device to
initiate the camera for taking pictures.

● public void checkPermission(): Checks whether the permission that the user gives
is stable before connecting to the camera of the device.

● public void takePhoto(): If the camera is reached by the application, this allows
users to take pictures of their preference to further use it for editing.

HomeController

This class will manage the user log-in and sign-up operations and will use
the DBManager to access the database of users. The DBManager is a
singleton that HomeController will use.

Attributes:

● private static DBManager databaseManager = null: This is the singleton instance is
responsible for establishing a connection between the database and the
mobile device, using the JDBC driver.

Methods:

● public void initApp(): Communicates with the view classes so that the
application is initialized.

● public void connectDB(): Establishes the connection between database and
application using a hardcoded connection string, which consists of a URL, DB
user, and DB password.

● public void connectServer(): Establishes the connection between the AWS and
application (?)

● public void signIn(String username, String pw): Tells the DBManager to execute
such a query so that the user with the given information exists, and
credentials are correct. After that, the user will have their own session as the
application is open.

● public void signUp(String username, String pw): Tells the DBManager to execute
such a query so that the user with the given information does not exist, and
a row in the User table is created. After that, the user will be asked to sign
in, so this method will also redirect the view in such a way.

DBManager

This singleton class is responsible for establishing a connection and then
storing it, using the JDBC driver for MySQL. It can also execute any SELECT
query, and then retrieve the results.

Attributes:

● private Connection connection: The connection established will be stored in this
attribute.

Methods:

● public ResultSet query(Connection c, String query): Executes any MySQL query
using the connection provided. If there is a result, it is returned. If there is
any MySQL exception, they are also handled.

● public ArrayList<T> processResultSet(ResultSet rs): A ArrayList<T>
processResultSet() method will be implemented if necessary for SELECT
queries, that is if the database gets larger.

4.2.3. client.data

Figure 5: Class diagram for client.data package

User

This class represents the User table of the application’s database as entities.

Attributes:

● private int userID: Stores the id of the user.
● private String username: Stores the name of the user.
● private int password: Stores the password of the user.

Image

This class represents the edited images as an image object for local storage.

Attributes:

● private int width: Stores the width of the image.
● private int height: Stores the height of the image.
● private io.Image matrix: Stores the matrix representation of the image pixel by pixel.

Methods:

● public io.Image getMatrix(): Returns the matrix representation of the edited image.
● public void setMatrix(io.Image matrix): Sets the matrix representation of the edited

image.

4.2.4. server.applicationLogic

Figure 6: Class diagram for server.applicationLogic package

SegmentationNeuralNetworkEngine

This class is responsible for the Segmentation task.

Attributes:

● private model SegmentationNeuralNetwork: This attribute stores the segmentation
neural network parameters.

Methods:

● public ArrayList<int> segment(Image i): This method makes the segmentation.

DeepFillNeuralNetworkEngine

This class is responsible for the Deep Fill task.

Attributes:

● private model DeepFillNeuralNetwork: This attribute stores the deep fill neural network
parameters.

Methods:

● public Image fill(Image i, ArrayList<int> mask): This method makes the neural network
works and fill the selected area

ConvertDrawingNeuralNetworkEngine

This class is responsible for the converting to drawing style task..
Attributes:

● private model ConvertDrawingNeuralNetwork: This attribute stores the neural network
parameters.

Methods:

● public Image converDrawing(Image i): This method makes the neural network work and
applies the converting to drawing task with the given parameters.

TransferStyleNeuralNetworkEngine

This class is responsible for the converting to drawing style task..

Attributes:

● private model TransferStyleNeuralNetwork: This attribute stores the neural network
parameters.

Methods:

● public Image transferStyle(Image i, Image d): This method makes the neural network
work and applies the transfer styling to the destination image.

TransferEngine

This class gets the request from the client and make the appropriate models work to
handle the request and send the response to the client

Attributes:

● private blender ConvertDrawingNeuralNetworkEngine: This attribute provides the
methods for the convert drawing task.

● private blender TransferStyleNeuralNetworkEngine: This attribute provides the methods
for the transfer styling task.

● private filler DeepFillNeuralNetworkEngine: This attribute provides the methods for the
deep filling task.

● private filler SegmentationNeuralNetworkEngine: This attribute provides the methods for
the segmentation task.

Methods:

● public Image handleConvertDrawing(Image i): This method handles the convert drawing
task

● public Image handleTransferStyle(Image i, Image d): This method handles the
transferring the style task

● public Image handleDeepFill(Image i, ArrayList<int> mask): This method handles the
deep filling task.

● Public ArrayList<int> mask handleSegmentation (Image i): This method handles the
segmentation task

● public void sendResponse(Image i, Figure f, ArrayList<int> mask): This method sends
the output of neural networks into the client

4.2.5 server.data

Figure 7: Class diagram for server.data package

SegmentationNeuralNetwork

This is the NN model responsible for the segmentation task.

Attributes:

● Private Weights: This represents the learned parameters by the model to do the task.
● Private Architecture: This represents the underlying architecture of the segmentation NN.
● Private Password: This is the password needed to access the models.

DeepFillNeuralNetwork

This is the NN model responsible for the deepfilling task.

Attributes:

● Private Weights: This represents the learned parameters by the model to do the task.
● Private Architecture: This represents the underlying architecture of the deepfill NN.
● Private Password: This is the password needed to access the models.

TransferStyleNeuralNetwork

This is the NN model responsible for the transferring style task.

Attributes:

● Private Weights: This represents the learned parameters by the model to do the task.
● Private Architecture: This represents the underlying architecture of the transferring style

NN.
● Private Password: This is the password needed to access the models.

ConvertDrawingNeuralNetwork

This is the NN model responsible for the conversion to the drawing style task.

Attributes:

● Private Weights: This represents the learned parameters by the model to do the task.
● Private Architecture: This represents the underlying architecture of converting to drawing

NN.
● Private Password: This is the password needed to access the models.

5. Testing Details

5.1. Functional and non-Functional Testing

We needed to make sure that every point in the functional and non-functional

requirements were met in the DeePaint application to ensure that our project delivers its

users the promised features. This testing method enabled us to find the correct UX for

DeePaint users.

5.2. Continuous Integration

As we had a continuous integration development pipeline, we were able to define our

mistakes very early enabling us to handle them before there were any big and

irreversible consequences of these mistakes. We tested different components of our

application as separate as from each other and followed a build up method. We did not

continue implementation of that component until we assured that it was working as

intended.

5.3. Testing the UI

User interface is an important aspect of our project, hence we paid lots of attention

while developing this side to make sure it was working in the correct way. To make sure

that our UI is working as intended, we used our application at different times and tried to

locate any possible errors, or any weak aspects. This method enabled us to detect and

solve UI mistakes and missing parts in a fast and easy manner.

5.4. Server Performance and Response

As DeePaint is an application centered around image manipulations tasks, we need to

send and receive images to and from the server. Consequently, delivery time is an

important aspect of the project. Long image retrieval makes the users unhappy. Hence,

we sent and received back different images with different sizes and resolutions to and

from the server in order to ensure delivery time is smaller than the desired upper limit.

Also, we need to process images using neural networks on the server side. Some of the

neural networks lasted around 1 minute to process desired tasks. Therefore, we moved

to the other networks that do the same task in a shorter amount of time. This part of the

project was very crucial to us since it is directly related to the user experience.

6. Maintenance Plan and Details

6.1. Server Maintenance and Optimization

Since our application makes use of state-of-the-art neural network models for different

kinds of image manipulations tasks, it is highly probable that new and better alternative

neural network architectures that do the same task as ours will be released in the future.

Therefore, adapting to those kinds of changes is crucial for our application in order to

keep up with current technology levels.

On the other hand, in terms of hardware requirements, currently we use Google Colab

to run our machine learning algorithms. However, in the future as the number of users

increases, we will require much more computational power. Therefore, we might need to

switch to a stronger GPU machine or a completely new server provider company. In

order to determine this, we will need to regularly monitor server performance in terms of

response time and ability to cope with multiple simultaneous requests.

6.2. Database Maintenance

We use Firebase to store our user login information (i.e emails and passwords).

Therefore, as the number of users increases, maintaining this database will be much

more important. We will need to do backup regularly, query optimization, and efficient

indexing.

7. Other Project Elements
7.1. Consideration of Various Factors in Engineering Design

Public Health

Our project is a mobile application so people are required to use their mobile phones

and spend some time applying changes in the image. Using mobile phones excessively

causes some physical problems such as neck and eye problems [2]. This is not special

to our application but as the program increases the amount of time spent on mobile

phones, we should consider this factor. Therefore, we should design a smooth user

interface such that people can make photoshop easily and do not have to spend

excessive time. However, the most important health issue we care about is

psychological effects. According to the latest research, social media causes

psychological problems such as anxiety and depression [3]. People compare

themselves with other people and use photo-shop applications to make themselves

more beautiful or handsome. They try to make their photos better to get more likes. Our

program is designed for making photographs more desired. However, we do not want to

connect our application to social media apps. For instance, after editing the photograph,

there is no option such as ‘post it on Instagram’. We want people to change their

photographs because only they want. Therefore, we do not encourage users to post

their edited photos on social media.

Public Safety

As our application has the capability of generating realistic fake images, a malevolent

person can abuse it. To prevent it, we want to add a mark to our generated images

saying that it is generated by DeePaint. Therefore, people can easily understand

whether the image is fake or not. Furthermore, as the program takes image input from

the user and sends it to a server to process it, we have to care about the security of the

data because it is the online environment. Therefore, we use the servers of Google

Colab which is a well-known company that cares about the privacy and security of the

users’ data.

Public Welfare

Our program is free to download. Therefore, there is no effect on public welfare.

Global Factors

Our project is designed for each person around the world. Therefore, the language of

the app should be English. Also, in the future, we may put additional languages as

options.

Cultural Factors

Our program has no correlation with cultural factors.

Social Factors

People generally use photo-shop applications for social media. However, we do not

want to increase the amount of time spent on social media. Therefore, we do not

connect our application with any social media app.

Effect Level Effect

Public Health 8 Physical and psychological
problems

Public Safety 5 Data privacy and Fake News

Public Welfare 0 -

Global Factors 4 The program’s language
should be English

Cultural factors 0 -

Social Factors 3 Increase the amount of time
spent on social media

Figure 8: Evaluation criteria for factors in engineering design

7.2. Ethics and Professional Responsibilities

In our application data privacy is very important. Therefore, we follow the data privacy

code [4]. Another important factor in our program is the biases in the neural networks.

Neural networks can carry implicit biases against some ethnicities, cultures etc.

However, there are also well-studied methods to reveal biases and prevent biases. We

will ensure that our neural networks used in photo-shop do not carry such biases. The

libraries, APIs will be used according to their license agreements. Furthermore, we will

follow the ACM code of ethics [5].

7.3. Judgements and Impacts to Various Contexts

Judgment Description: DeePaint must watch for data privacy for its users. Since the
users upload their private information (i.e) photos to edit

them, we must ensure our users that nobody can access their

photos.

Impact Level Impact Description

Impact in Global Context 10/10 Privacy would allow DeePaint to provide
trustworthy services to worldwide users.

Impact in Economic Context 7/10 Since privacy is very important for us, we
need to work with trustworthy server

providers, which have a certain cost. We
needed to consider different options to

choose the best fitting privacy / cost ratio
efficient service provider.

Impact in Environmental
Context

0/10 Does not have an environmental impact

Impact in Societal Context 10/10 Prioritized privacy will increase user trust in
DeePaint, which is an important aspect.

Figure 9: Privacy Judgement

Judgment Description: After editing the photograph, we do not offer an option such
as ‘post it on Instagram’

Impact Level Impact Description

Impact in Global Context 2/10 Since we do not encourage users to post
their edited photos on social media, this

impact might become global.

Impact in Economic Context 0/10 Does not have an economic impact

Impact in Environmental
Context

0/10 Does not have an environmental impact

Impact in Societal Context 10/10 People compare themselves with other
people and use photo-shop applications to

make themselves more beautiful or
handsome. We want people to change their

photographs because only they want.
Therefore, we do not encourage users to
post their edited photos on social media.

Figure 10: Social media share option judgement

7.4. Teamwork Details

7.4.1 Contributing and functioning effectively on the team

When collaboration doesn’t feel organic, it can seem incredibly tiresome. When

practiced effectively, however, as a team we are aware that the importance of teamwork

in software development, or any type of business for that matter, is paramount. Thus,

we have divided the workload as effectively as possible to drive a functioning project

plan.

As our application depends on neural networks and the working principle is stochastic,

we first want to be sure that current neural network technology will satisfy our

expectations. Therefore, we divide our team into 2 parts: people mostly dealing with

neural networks and people mostly working on the application development side.

However, this separation is not strict, and each member is welcome to participate in

both parts.

We have divided the entire work of the project into small work packages. According to

this, we have 12 packages: Analysis Report, High-Level Design Report, Implementation

of Neural Networks for segmentation and Image Generation Tasks, Development of

User Interface and Backend in Android, Connecting Android Application with Neural

Networks for Object Removing Task Only, Demo in Desktop, Low-Level Design Report,

Add Other Functionalities into Neural Networks, Add Other Functionalities into

Back-end and Front-end, Connect server-application, Mobile Phone Demo, Final

Report. So far, Analysis Report, High-Level Design Report, Implementation of Neural

Networks, some other Functionalities of Back-end and Front-end, and Connecting

server-application for Demo in Desktop have been completed.

For reports all members are involved and contribute to different sections. For Demo in

Desktop, Duygu, Yavuz, and Alperen contribute to the implementation of Neural

Networks for segmentation and Image Generation. Zübeyir and Hande contribute to it in

the application development side with the user interface, server connection, and more.

7.4.2 Helping creating a collaborative and inclusive environment

Productivity, effective communication, exchange of ideas, and enhanced performance

are the key qualities of a functioning project team. Moreover, this helps create unity

within the team through inclusiveness and collaboration.

To achieve this, we have communicated on a weekly basis using synchronous

environments. We have also communicated persistently in asynchronous environments.

The synchronous environments used are the following;

● Online meetings, through Zoom. All members opened their cameras and were on

time.

● Face-to-face meetings. Especially in the implementation phase, we have

arranged face-to-face meetings to communicate and collaborate better and make

sure an inclusive environment is achieved.

● Short phone calls when necessary.

The asynchronous environments used are the following;

● Messaging through WhatsApp.

● Communicating through GoogleDocs comments to share ideas while writing

project documents.

7.4.3 Taking lead role and sharing leadership on the team

Since we have divided the entire workload into small work packages as mentioned

above, each package is led by different members of the group.

Zübeyir Bodur: Taking the lead role in Analysis Report, and Add Other Functionalities

into Neural Networks.

Hande Sena Yılmaz: Taking the lead role in the Development of User Interface and

Backend in Android.

Alperen Öziş: Taking the lead role in Connecting Android Application with the server for

Neural Networks, Add Other Functionalities into Neural Networks, and Mobile Phone

Demo.

Yavuz Bakman: Taking the lead role in the Implementation of Neural Networks for

segmentation, deep-fill, and other smart features.

Duygu Nur Yaldız: Taking the lead role in High-Level Design Report, Demo in Desktop,

Low-Level Design Report, support for neural network models, and Final Report.

Each member of the group integrates with the members involved in developing each

work package which is led by mentioned group members and every member is

welcome to share the work at any point to develop the best functioning products.

7.4.4 Meeting objectives

WP# WP Title Leader Members Involved

WP1 Analysis Report Zübeyir Bodur All members

WP2 High Level Design Report Duygu Nur
Yaldiz

All members

WP3 Implementation of Neural
Networks

Yavuz Faruk
Bakman

Alperen Ozis, Duygu Nur
Yaldiz

WP4 Development of User Interface
and Backend in Android

Hande Sena
Yilmaz

Zubeyir Bodur, Duygu Nur
Yaldiz

WP5 Connecting Android Application
with Neural Networks/Server

Alperen Ozis Yavuz Faruk Bakman

WP6 Demo in Desktop Duygu Nur
Yaldiz

All members

WP7 Low Level Design Report Zubeyir Bodur All members

WP8 Add Other Functionalities into
Neural Networks

Yavuz Faruk
Bakman

Alperen Ozis

WP9 Add Other Functionalities into Hande Sena Zubeyir Bodur

Back-end and Front-end Yilmaz

WP10 Mobile Phone Demo Alperen Ozis All members

WP11 Final Report Duygu Nur
Yaldiz

All members

WP12 Poster Hande Sena
Yilmaz

All members

Above is given the final work packages of our project. Each work package is done

successfully by the assigned group members. Hence, now we have our application

DeePaint providing its users easy-to-use and fast image manipulation features.

7.5. New Knowledge Acquired and Applied

Our initial knowledge to develop DeePaint was not sufficient enough. For example, even

though some of us had previous experience on Android Studio and mobile application

development, we needed to learn much more features while developing our project. We

took help from Youtube videos, Udemy courses and Github tutorials to enhance our

knowledge on the application side.

Also, although some of our team members were experienced on machine learning

algorithms, we did not have too much experience in generative and segmentation

neural networks. Therefore, we read lots of papers regarding our aimed features and

inspected their Github repositories.

1. Instance Segmentation: For this task, we employ the algorithm proposed in

Masked-attention Mask Transformer for Universal Image Segmentation. The key

component is masked attention which enables the model to extract localized

features. The model outperforms other methods by a significant margin.

2. Image Inpainting: For this task, we used Resolution-robust Large Mask Inpainting

with Fourier Convolutions paper. The special property of this architecture is the

success in high resolution images which are very common in mobile photos.

3. Convert Drawings: For this task, we used the paper named as Learning to

generate line drawings that convey geometry and semantics. This recent work

enables our app to convert a photo into a sketched version.

4. Style Transfer: The most of the work for this task requires iterative algorithms

which consumes too much time. However, our app should work fast and

smoothly. Therefore, we adopt the algorithm provided by tensorflow which is

quite fast.

Besides the literature review, we did not know how to upload a neural network into a

server and communicate with mobile applications. We considered various server

providers such as AWS, Microsoft Azure, and Google Colab. In the end, we decided to

continue with Google Colab.

8. Conclusion and Future Work
Overall, DeePaint became a working application for Android mobile devices. It is

capable of removing a desired region from an image (this region is defined either by

drawing by hand or selecting an object that is automatically segmented by the

application), making a photo as if it is hand drawn, and last but not final transferring the

style of an image to another one. DeePaint provides its users with these functionalities

as easily as possible which was one of our main goals initially.

However, of course, DeePaint can be enhanced by adding brand new features, such as

image blending, text to image manipulation etc. Thanks to our project design, adding

new features to the application will not be challenging. Moreover, we are able to easily

change the current neural networks with new ones if state-of-the-art changes in time.

Lastly, as a future work, we can consider adapting the application to the iOS platform to

reach out more users.

9. Glossary
Neural Network: Algorithms that reflect the behavior of the human brain, allowing programs to

recognize patterns [6].

10. References

[1] “Instagram by the Numbers: Stats, Demographics & Fun Facts,” Omnicore Agency, Jan 3,

2021 [Online]. Available: https://www.omnicoreagency.com/instagram-statistics/ [Accessed

Oct 10, 2021].

[2] “Signs and Symptoms of Cell Phone Addiction,” PsychGuised, [Online]. Available:

https://www.psychguides.com/behavioral-disorders/cell-phone-addiction/signs-and-sympto

ms/. [Accessed Nov. 13, 2021].

[3] “Social Media and Mental Health,” Help Guide, [Online]. Available:

https://www.helpguide.org/articles/mental-health/social-media-and-mental-health.htm.

[Accessed Nov. 13, 2021].

[4] “Data Privacy,” Code of Conduct, [Online]. Available:

https://code-of-conduct.roche.com/en/data-privacy.html. [Accessed Nov. 13, 2021].

[5] “ACM Code of Ethics and Professional Conduct,” ACM, [Online]. Available:

https://www.acm.org/code-of-ethics . [Accessed Nov. 13, 2021].

[6] “Neural Networks,” Intel, [Online]. Available:

https://www.ibm.com/cloud/learn/neural-networks . [Accessed Nov. 15, 2021].

https://www.omnicoreagency.com/instagram-statistics/
https://www.psychguides.com/behavioral-disorders/cell-phone-addiction/signs-and-symptoms/
https://www.psychguides.com/behavioral-disorders/cell-phone-addiction/signs-and-symptoms/
https://www.helpguide.org/articles/mental-health/social-media-and-mental-health.htm
https://code-of-conduct.roche.com/en/data-privacy.html

